Formula 1: \(A = \pi L \frac{D}{12} \)

Where

\(A = \) area in sq. ft.
\(L = \) length in ft.
\(D = \) diameter in inches.

Formula 2: \(I_R = \frac{Sd(1-q)}{1000} \)

Where

\(I_R = \) current requirement in amps
\(S = \) surface area in sq.ft.
\(d = \) current density in mA/sq.ft.
\(q = \) coating quality as a decimal

Formula 3a: \(L = \frac{WCU}{8760I} \)

Formula 3b: \(W = \frac{8760LI}{CU} \)

Where

\(L = \) years of life
\(W = \) anode weight in lbs.
\(C = \) energy capability in amp-hrs per lb.
\(I = \) current output in Amps.
\(U = \) Utilization factor as a decimal

\(8760 = \) hours in 365 days

Note: Energy capability is based on an efficiency of 50% for magnesium

\(C = \) (theoretical amp-hrs per lb.)(current efficiency)

For magnesium \(C = 500 \)

\(U = 0.85 \)

Formula 4a: **Groundbed Resistance for a Single Vertical Anode**

(Dwight’s Formula)

\[R = \left(\frac{0.00521 \rho}{L} \right) \ln \left(\frac{8L}{d} \right) - 1 \]

Where

\(R = \) resistance in ohms
\(L = \) anode length (package length) in feet
\(d = \) anode diameter (package diameter) in feet
\(\rho = \) resistivity in ohm-cm

\(\ln \) is the natural logarithm function
Formula 4b: Groundbed Resistance for Multiple Vertical Anodes in Parallel (Sunde’s Formula)

\[
R = \left(\frac{0.00521\rho}{NL}\right) \left(\ln\left(\frac{8L}{d}\right) - 1 + \left(\frac{2L}{S}\right)\ln(0.656N)\right)
\]

Where
- \(R \) = resistance in ohms
- \(L \) = anode length (package length) in feet
- \(N \) = number of anodes
- \(S \) = anode spacing in feet
- \(d \) = anode diameter (package diameter) in feet
- \(\rho \) = resistivity in ohm-cm
- \(\ln \) is the natural logarithm function

Formula 4c: Groundbed Resistance for a Single Horizontal Anode (Sunde’s Formula)

\[
R = \left(\frac{0.00521\rho}{L}\right) \left[\ln\left(\frac{4L^2 + 4L\sqrt{S^2 + L^2}}{dS}\right) + \frac{S}{L} - \frac{\sqrt{S^2 + L^2}}{L} - 1\right]
\]

Where
- \(R \) = resistance in ohms
- \(L \) = anode (package length) in feet
- \(S \) = twice the anode depth in feet
- \(d \) = anode diameter (package diameter) in feet
- \(\rho \) = resistivity in ohm-cm
- \(\ln \) is the natural logarithm function

Formula 5a: Driving Voltage and Life

\[
V_d = \frac{0.0485WaNR_{gb}}{L_f}
\]

Where
- \(V_d \) is driving voltage in volts
- \(W_a \) is the weight of one anode in lbs.
- \(N \) is the number of anodes
- \(R_{gb} \) is the groundbed resistance in ohms
- \(L_f \) is the life of the system in years

Formula 5b: Driving Voltage and Polarized Potential

\[
V_d = P_a - P_c
\]

Where
- \(V_d \) is driving voltage in volts
- \(P_a \) is the open circuit potential of the anode
- \(P_{oc} \) is the standard potential magnesium (1.55V for Standard Potential Magnesium)
- \(P_{hc} \) is the high potential magnesium (1.75V for High Potential Magnesium)
P_c is the potential of the cathode in volts. (polarized potential of the pipe)

Formula 5c: Driving Voltage and Sunde’s Formula

\[V_d = \left(\frac{0.00025268W_a \rho}{L_f L} \right) \left[\ln \left(\frac{8L}{d} \right) - 1 + \left(\frac{2L}{S} \right) \ln(0.656N) \right] \]

Where

- \(V_d \) is driving voltage in volts
- \(W_a \) is the weight of one anode in lbs.
- \(N \) is the number of anodes
- \(L \) is the length of the anode (package) in ft.
- \(d \) is the diameter of the anode (package) in ft.
- \(S \) is the spacing between anodes in ft.
- \(L_f \) is the life of the system in years
- \(\ln \) is the natural logarithm

Formula 6: Groundbed Current Output

\[I = \frac{P_a - P_c}{R_{gb}} = \frac{V_d}{R_{gb}} \]

Where

- \(I \) = Output current in amps
- \(P_a \) = Anode potential in volts
 - (1.55V for Standard Potential Magnesium)
 - (1.75V for High Potential Magnesium)
- \(P_c \) = Cathode potential in volts
 - (potential to which the pipe is to be polarized)
- \(R_{gb} \) = Groundbed resistance in ohms
- \(V_d \) = Driving voltage

Formula 7: Current Output for One Anode

\[I_1 = \frac{(P_a - P_c)}{R_{gb}} \]

Where

- \(I_1 \) is the current output of one anode
- \(P_a \) is the anode potential
 - (1.55V for Standard Potential Magnesium)
 - (1.75V for High Potential Magnesium)
- \(P_c \) is the cathode potential (0.85V)
- \(R_{gb} \) is the groundbed resistance for a single anode (from Dwight’s formula)